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Rational Approximations to a 

By K. Y. Choong, D. E. Daykin* and C. R. Rathbone 

Abstract. Using an IBM 1130 computer, we have generated the first 20,000 partial 
quotients in the ordinary continued-fraction representation of 7r. 

1. Introduction. Witb the aid of high speed computers, it has become possible 
to determine to very high accuracy the decimal representation of particularly interest- 
ing irrational numbers. Shanks and Wrench [1] have found the first lO0,OOOD of -r, 

and this information can be used to generate a large section of its ordinary continued 
fraction representation. Using an IBM 1130 computer, we have obtained the first 
20,000 partial quotients of r. The computation sheds some light on the problems of 
generating a huge section of the continued fraction of an irrational number. It is 
advantageous to generate a continued fraction, section by section, rather than to 
generate the partial quotients (p.q.'s) singly. Moreover, the size of the sections should 
be chosen carefully. 

To illustrate the method used, we present an example: Euler's constant, ' 
0.5772156649, to 10 decimal places. We work with a pair of numbers A and B; A is 
set initially to zero, B = 0.5772156649, and the sum A + B is formed. The fractional 
part of A + B is stored in B or A, respectively, according as there is or is not a carry 
into the integer portion. The process continues with the current A and B: 

0.0000000000 A 
0.5772156649 B 
0.5772156649 A .....a a, = 1 
0.1544313298 B ..* a,a2 = 1 
0.7316469947 AA1= 
0.8860783245 A). a3 2 
0.0405096543 B .... a4= I 

0.9265879788 A| a5 = 2 
0.9670976331 A= 
0.0076072874 B ..... a6 = I 
0.9747049205 Al 
0.9823122079 At ....... a7 = 4 
0.9899194953 A 
0.9975267827 A 
0.0051340701 B 

The number of consecutive A's and B's in the list is recorded, and we obtain 1, 1, 2, 
1, 2, 1, 4, * * *, which is the start of the continued fraction representation of y. Of 
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course, the integers a, (i _ 1) relate to jy = 0.5772156649 rather than to y, but the 
first 12 ai's are the same for both numbers. An exceptional case arises, however, when 
B = 0 is obtained, i.e. the continued fraction terminates. Depending on whether 
zero comes at the end of a sequence of B's or A's, it should be labelled as B or A, 
respectively. Thus, in the latter case, 1.0 is regarded as the infinite decimal 0.99 . 

The above process has two obvious defects. First, in the event of a large ai, many 
additions have to be performed to obtain it. Secondly, to obtain a large number 
of p.q.'s, each A and B must have a correspondingly large number of digits. When 
these numbers become too large to keep in the working store of the computer, the 
efficiency falls off sharply. 

2. Mathematical Background. There is a close connection between continued 
fractions and the concept of best rational approximation [2]. The convergents pi/qi = 
[al, a2, * * *, ai-1]* (i > 2) to a real number 0 (0 < 0 g 1) are also best rational 
approximations (BRA's) to 0, in the sense that lqiO - pil < IqO - pl for all non- 
negative integers q < qi and all p. We can define (po, qo) = (1, 0) and (pi, ql) = (0, 1) 
to start the sequence of pairs (pi, qi), and ai may be generated from the recurrence 
relation: 

(2.1) (qi+O - pi+)= a(qiO - pi) + (qi-1O - pi-,) (i > 1), 
in which the terms (qiO - pi) alternate in sign. Denoting qio - pi by Xi(0), 4kt(0) is 
added repeatedly to 4i_1(0). The last number in the sequence 4i + (pi_, 2pi + (pi-is 
3'i + (pi, ... , with the same sign as Xi-l(0), is 0i++(0). as is obtained in the process. 

The algorithm in Section 1 differs in one detail from that above. ,2k(0) is replaced 
by 27(0) -1 + 02k(0), and k2+1(0) = 42k+1(0) (k ? 0). This dispenses with negative 
numbers. The algorithm (2.1) becomes: 

(2.2) IPi+,(0) = {aj 6j(0) + ;fi-l(0)}, (i> ) 

where { } denotes fractional part. The sequence (/21) increases monotonically and 
ultimately consists of numbers of the form 0.999 .. , while the sequence (412k+1) 

decreases monotonically to zero. 
Finally, in attempting to generate the continued fraction of an irrational number, 

we will need a result such as the following: 
THEOREM I. If p2,-1/q21-l and p2,/q21 (k > 1) are successive BRA's to U (O < 

U < 1), and if there exist positive integers m and m' (m ? m') such that 
(i) 10"2> 0 - U> 0 and 

(ii) lq2k6 
- P2k| > 10 

Mt 

then p2k1/q2k-i andPp21/q2k are BRA's to 0. Also q2k < 10'. 

Proof. The proof depends on two well-known results: 
(1) If p2k-1/q2k-1 and p2 /q2k are BRA's to U, then they are BRA's for all x such 

that (p2k-1 + p2k)/(q2k-1 + q2k) ?< X ? p2k/q2k- 

(2) a q > | q2k 0 P2k | = (P2k q2k U) > + l)q 

Thus, l/q2k > P2k - q2kU > 10-m', i.e. 10"'' > qlk. Multiplying inequalities yields 

** Denotes a terminating continued fraction. 



RATIONAL APPROXIMATIONS TO X 389 

p2k/q2k - U > IO-. By(') p2/q2k - k > 0 - U, which implies that p2k/q2k > 0 > 
o > (P2k-1 + p2k)/(q2k-I + q2k). 

COROLLARY. Under the hypotheses of Theorem I, the p.q.'s a, a2, , * a2k-1 are 
common to both U and 0. Stated simply, the result is: Take the first 2m digits of V/',(6) 
and V/1(0), then the as's (i > 1), generated from the truncated numbers, are correct for 
0, until a type-A number is obtained with m nines immediately after the decimal point. 

In the next section, this result is modified to a form which is used repeatedly in 
the program. 

3. Improved Method. The algorithm of Section 1 is unsuitable for generating 
a large number of p.q.'s for the reasons given there. However, its main defects are 
easily removed. 

Instead of adding {li to Vi-,, one can add lO'i, where a > 0 is the smallest 
integer such that { 10 '/ i + {i-l I and {i are of the same type (A or B). The process 
continues with V/'- = { 10'l + {i-l} instead of Vt'_ until /it+1 is obtained. If t is 
the time required to find 4'i +, by the original method, then the time by the modified 
method is approximately loglot. The process is further speeded up by using, instead of 
the algorithm (2.2), the following result [3]: 

(3.1) ci(G) = Pio(O) + qi01(0) (i > 2), 

or its equivalent: 

(3.2) =i(O) {p=pio(O) + qi061(O)}. 

An approximation j to 0 is used to generate al, a2, ... , ai-1; Pi-l, qi-1; pi and qi 
for some i (odd integer). Equation (3.2) then yields fi-l(O) and 4pi(O) to full accuracy. 
Next, a new pair if0 and i1 is obtained from ipi- and ipi, by multiplying the latter 
pair by the least power of 10 sufficient to remove all nines immediately following 
the decimal point of Pi-, and then taking fractional parts. The partial quotients 
ai, a+1, * 

- 
* for 0 are just the p.q.'s for the new number V/1/(l - ,6) and are obtained 

by using truncated versions of ip' and Vf1. So the process is repeated with each new 
0o =I'/(1 - 40). However, suppose f0 and {, denote, respectively, ip0 and t, truncated 
to 2m digits, then all that is known about the difference 0 - U is that 10-2m+2 > 
0 - j > 0. The test for whether 0 and j have the same p.q.'s is provided, not by Theo- 
rem I, but by the following: 

THEOREM II. If W0 and {', are given by the first 2m decimal digits of {C, and lp,, re- 
spectively, if the sequences ({i+,) and (a.) (i > 1) are generated in the usual way, and if 
1-{2k > o-m (n < m - 1), then a, a2, ... 

a2k-, are p.q.'s of 0 =fr1/(l- l). 
It should be noted that a 2 may be obtained which is so close to one that no 

progress can be made. For large m, however, this possibility becomes so unlikely as 
to be negligible. 

4. Program. We have generated the first 21,230 p.q.'s of 7r using a program 
based on the analysis of Sections 2 and 3, and using the first 25,000 decimal places 
of 7r obtained from the table of Wrench and Shanks [1]. In fact, the program used 
binary numbers and was written in IBM 1130 machine language in which a word will 
hold integers <216. 

We can estimate the theoretical time for the main program. Let c, (1 < i < 5) 
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denote certain constants for the program by which N p.q.'s are generated in sections 
of M p.q.'s, the numbers A and B in the main store (disc) being revised after each 
section. We start with a 2n digit nunmber 0 and use approximations to it (and to 
each new 0) with 2m digits. N/M c- n/m. Three basic operations are each repeated 
n/m times: 

(i) Each p.q. takes an average computation time a + bm. Each section of M p.q.'s 
is generated in time c,m + c2m2. 

(ii) The four multipliers in the algorithm (3.2) are computed in an average time 
C3M2. 

(iii) To update the disc once requires an average time n(c4M2 + cm)/rm, where 
c4mn is the time for multiplications, and c5n the time for transfers between the disc 
and working area (core). 

Total time T = n[c, + (C2 + c3)M + c4n + c5n/m]. For fixed n, T is least when 

mn = c5n/(C2 -c3). In our program, m = 640 binary digits (n 40,000) was chosen 
to use up available core space and, due to the expected size of C5, is still likely to be 
less than the optimum value. In any event, the main program generated just over 
20,000 p.q.'s in 4.6 hours. The binary conversion of data and conversion of our 
results into decimal took a further one hour. 

As a check against machine errors, the program was run twice and as an additional 
safeguard, different values of m' (Theorem II) were used on each occasion. A print- 
out of the input data has been checked repeatedly against the original table [1]. 

5. Results. Because of its length, a table of the first 21,230 p.q.'s of 7r is not 
published here, but has been placed in the UMT file of this journal, together with the 
first 3470 p.q.'s of y obtained while testing the program. (See Review 23, p. 403, this 
issue.) The frequency with which the integer n (n ? 10) appears as a partial quotient 
in these tables is compared in Table 1 with (log [(n + l)2/n(n + 2)])/(log 2), the cor- 

TABLE 1 

Theoretical frequency 
distribution, 

Frequency of occurrence of n ( (n + ?)\/ 2 
log n( / ) (log 2) 

n 21,230 p.q.'s of X 3470 p.q.'s of y 

1 .4188 .4225 .4150 
2 .1694 .1696 .1699 
3 .0890 .0905 .0931 
4 .0577 .0550 .0589 
5 .0437 .0435 .0406 
6 .0278 .0320 .0297 
7 .0236 .0210 .0227 
8 .0189 .0202 .0179 
9 .0140 .0118 .0144 

10 .0120 .0124 .0119 
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TABLE 2 

The partial quotients > 2000 in the first 21,230 p.q.'s ofJ'r 

i a, 

431 20,776 
15,543 19,055 
20,276 18,127 

3,811 8,277 
8,719 7,444 

19,223 4,767 
20,358 4,415 
12,426 4,264 
3,777 2,159 
6,209 2,050 

responding frequency distribution for 'almost every' irrational number (see, for 
example, [4]). We have also listed those p.q.'s so far obtained for iv which exceed 
2000. See Table 2. The largest, a431 = 20,776, occurs comparatively early. 

After 20,831 p.q.'s were generated, the disc underwent one of its periodic revisions. 
We found that 2-85'.79 > B > 2-35.580, 2-35580 > 1 - A > 2-3551l and a20,831 
From these numbers we obtain bounds for q20,831 238.78 < q20,831 < 235.580. We also 
find that 21,422 decimal places of ir are sufficient to generate a20,830, but 21,419 
decimal places are not enough. The first statement depends on the following: 

PROPOSITION. If p2A+l/q2A+l is a BRA to 0, and if 2' > 0 - 5 > 0 and 
Jq2k310 - p2lh+1 > 2-m, then p2A+1/q2k+1 is a BRA to 5. 

The proof is similar to that of Theorem I. 
Here 0 is a truncated version of ir. The convergent (p/q)20,831 for 0, and approxi- 

mately the next 400 convergents, hold for x. Then (p/q),o,83j also holds for S = ir 

truncated to 71,160 binary places (or 21,422 decimal places). However, S =r truncated 
to 21,419 decimal places does not lie between 

(P~) and P20,830 + P20,831. 

q 20, 831 q20,830 + q20,831 

It was shown by Levy (see [4, p. 75]) that, for almost every real number, 

1 iv2 
Lim - log qk = 12 =2= 1.1865** 

For iv and k = 20,831, we have (I/k) log qk = 1.1838 * . 
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